Deformation Prediction of Reservoir Bank Slopes in Tropical Typhoon and Heavy Rainfall Areas Based on BO-LSTM-Transformer
编号:57 访问权限:仅限参会人 更新:2025-08-12 23:21:59 浏览:191次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In regions prone to tropical typhoons and heavy rainfall, reservoir bank slope deformation displays pronounced nonlinear and time-varying characteristics, posing challenges for traditional methods in capturing complex evolutionary patterns. To overcome this, this study introduces a deep learning model that integrates LSTM and Transformer architectures. The LSTM network hierarchically extracts temporal rainfall features, while the Transformer's multi-head self-attention mechanism captures global correlations in deformation fields. Hyperparameters are adaptively optimized using a Bayesian algorithm to build a dynamic prediction framework. Applied to a slope in a Hainan water conservancy project, experimental results demonstrate that the LSTM-Transformer model significantly outperforms standalone LSTM and Transformer models in prediction accuracy during deformation phases. This research delivers a high-precision, interpretable tool for intelligent reservoir bank slope monitoring, enabling proactive decision-making for geological disaster risk early warning.
关键词
暂无
报告人
Wang Huajin
Tongji University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月23日

    2025

    08月26日

    2025

  • 08月15日 2025

    初稿截稿日期

  • 08月20日 2025

    报告提交截止日期

  • 08月26日 2025

    注册截止日期

主办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
承办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询